
Physics H7C Fall 1999 Solutions to Problem Set 12 Derek Kimball

“Entropy in the universe is always increasing. At some point, the universe will
reach its maximum state of entropy and then no work can be done. The universe
will become a cold, lifeless place. This is known as the heat death of the universe.
Get ready, it’s coming...”

- Prof. Seamus C. Davis, U.C. Berkeley.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1 Rohlf 12.5

Consider a system of 6 spin-1/2 fermions having a total energy of 10 units. The
fermions are in a quantum mechanical system where the ground state has 0 energy
units, the first excited state has 1 energy unit, the second excited state has 2 energy
units, etc. Determine the energy distribution function df/dE. Make an estimate
of the Fermi energy.
We make a table of the possible distributions and the spin degeneracy of each state
(i.e., if there is an isolated electron, it can be either spin up or spin down). We
then total up number of times an electron is found in a state, and from this total
we arrive at our distribution function f , which describes the probability to find an
electron in a particular energy level. The total number of times we find an electron
in an energy level for a distinct distribution (including spin degeneracy) is shown
on the bottom line.

Degen. Energy
0 1 2 3 4 5 6

4 2 2 1 0 0 0 1
4 2 2 0 1 0 1 0
1 2 2 0 0 2 0 0
16 2 1 1 1 1 0 0
4 2 1 2 0 0 1 0
1 2 0 2 2 0 0 0
4 1 2 1 2 0 0 0
4 1 2 2 0 1 0 0
TOTAL 68 54 42 30 22 8 4

f , which in this case is discrete, is just the ratio of the various total number of
times a particle is found in an energy level in one of the distributions to the ground
state (E = 0) number. So f(E) is a discrete function described by the following
relations:

f(0) = 1

f(1) = 0.79

f(2) = 0.62

f(3) = 0.44

f(4) = 0.32

f(5) = 0.12

f(6) = 0.6

f(E > 6) = 0

The Fermi energy EF is where this distribution has f(EF ) ≈ 1/2. This is seen
from the Fermi-Dirac distribution:

fFD(E) =
1

e(E−EF )/(kT ) + 1

fFD(EF ) = 1/2.

This is around E = 3 for this system. It doesn’t work out exactly because this is
a discrete system with a small number of possible distributions. If the number of
particles was greatly increased, the distribution would become increasingly well-
described by fFD, which is derived in the large N limit.

Problem 2

The energy of the 3D infinite square well in this case is given by:

En =
�

2π2

2mL2

(
n2

x + n2
y +

n2
z

ε2

)
.

ε is small, so since the number of particles is chosen to be small (εN � 1), the
temperature must be large in order to excite states with nz �= 1. We consider
the case of low temperature, where always nz = 1. In this case, the problem is
effectively 2D, with the energies:

En =
�

2π2

2mL2

(
n2

x + n2
y +

1
ε2

)
.

We seek the difference ∆ between the ground state energy and the Fermi energy,
both of which have a term

�
2π2

2mL2ε2
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which will cancel out.
First, let’s calculate the Fermi energy. The Fermi-Dirac distribution at T = 0 is
given by

fFD = 1 E < EF

fFD = 0 E > EF .

The electrons will try to achieve the lowest energy possible, filling up states in
accordance with the Pauli exclusion principle. The total number of particles is
given by:

N =
∫ ∞

0

2
dN

dE
fFD(E)dE

where the 2 is for spin degeneracy of the electrons. At T = 0, this integral becomes:

N =
∫ EF

0

2
dN

dE
dE.

Now we must determine the density of states for 2D. The energy of a state (ne-
glecting the common factor �

2π2

2mL2ε2 ) is ∝ N2 where N2 = n2
x+n

2
y and is the square

of the total number of available states. The derivative of N2 with respect to energy
is

d

dE
N2 =

1
4
2πN

dN

dE

where the factor of 1/4 arises because we consider only positive nx, ny and the 2π
is from the integration about a ring of thickness dN in n-space. From this we can
explicitly solve for dN

dE :

dN

dE
=
4mL2

�2π3

1
N
=
2
√
2mL

�π2
E−1/2.

Now we employ this expression for dN
dE in our integral for the total number of

particles:

N =
∫ EF

0

2
2
√
2mL

�π2
E−1/2dE = 8

√
2mL

�π2
E

1/2
F .

Solving for EF yields

EF =
�

2π4N2

128mL2

Problem 3

We start with the knowledge that the density of states is proportional to E1/2 and
the probability of occupation is

P (E) =
1

eβ(E−EF ) + 1
.

Let
dN

dE
= cE1/2.

where c is a constant. The fraction of nonrelativistic fermions in a gas of finite
temperature T above the Fermi energy is given by the integral:

F =
∫ ∞

EF
P (E)dN

dE dE∫ ∞
0

P (E)dN
dE dE

.

The denominator of the above equation is just the total number of particles, which
is easiest to evaluate at T = 0 where, since P (E) is just the Fermi-Dirac distribu-
tion function, we have:

P (E) = 1 E < EF

P (E) = 0 E > EF .

So the denominator is simply

∫ EF

0

dN

dE
dE =

∫ EF

0

cE1/2dE =
2
3
cE

3/2
F .

So employing all of our information, the simplest expression we can get for F is:

F = 3
2
E

−3/2
F

∫ ∞

EF

E1/2dE

eβ(E−EF ) + 1

Problem 4 Rohlf 12.16

We want to deduce the expression for density of states of a relativistic electron
gas. We first get the density of states with respect to k (where k̂ is the electron
wave vector) in the usual manner for a 3D particle in a box problem. The volume
of a shell of thickness dk in k-space (considering only positive kx, ky, and kz) is
(4πk2dk)/8. From the boundary conditions ki = (π/L)ni (where i = x, y, z and
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the box is length L on a side), we know the number of states per unit volume of
k-space is (L/π)3. So

dN

dk
=

k2V

2π2

where V is the volume of the box. Dividing by volume, to get the density of states
per unit volume, and converting to momentum p using the deBroglie relation
p = �k, we have:

dn

dp
=
4πp2

h3
.

To convert this expression into density of states per unit energy ρ(E), we use:

ρ(E) =
dn

dE
=

dn

dp

dp

dE
.

The relativistic expression for momentum in terms of energy is:

p =
1
c

√
E2 −m2c4.

Therefore
dp

dE
=

E

c2p
.

We now solve for ρ(E):

ρ(E) = 2
4πpE
c2h3

where the factor of 2 is for spin degeneracy.
The relativistic momentum is p = γmv and v ≈ c. The relativistic energy is
E = γmc2. Substituting these expressions in,

ρ(E) = 2
(
4πm2c

h3

)
γ2

Problem 5 Rohlf 17.27

(a)

There are six states of charmonium with n = 2. Charmonium is a bound state of
a charm and anti-charm quark. We don’t have to worry about symmetrization of
the wavefunction because these are not identical fermions. The total spin s of the
system can be:

s = s1 + s2 = 1, 0

where s1 = 1/2 and s2 = 1/2 are the spins of the quarks. The orbital angular
momentum l of charmonium can be l = 1, 0 in the n = 2 state. The total (spin +
orbital) angular momentum is given by

J = L+ S = l + s, ... , |l − s|.

So we have the following possible states:

j = 2, 1, 0 for s = 1, l = 1

j = 1 for s = 0, l = 1

j = 1 for s = 1, l = 0

j = 0 for s = 0, l = 0

which total six.

(b)

The unobserved state has s = 0, l = 1 and j = 1 by inspection.

(c)

By analogy to similar states in the chart of charmonium, the energy difference
between states with aligned vs. anti-aligned spins of the quarks is ∼ 100 MeV
(the energy difference of the ψ(2s) and ηc(2s) states and ψ(1s) and ηc(1s) states,
see Rohlf pg. 494). One could imagine that the energy splitting arises because of
some spin-spin interaction between the quarks, so the s = 0, l = 1, j = 1 state of
charmonium (called the or smiley particle) should be split in energy from the
χc1(2p) state by ∼ 100 MeV. So the mass of should be roughly 3400 MeV.

(d)

The particle is not observed because the method by which all the states of
charmonium were observed involved creation of a ψ(2s) particle and subsequent
electromagnetic decay. The energy of emitted photons was measured and the
spectrum of charmonium particles was established. Note that decays of ψ(2s) →
change both s and l by 1. Such a decay would involve interaction with both the
electric (to change l) and magnetic (to change s) components of the photon and
is highly suppressed.
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Problem 6 Rohlf 18.11

(a)

Consider this problem in the context of the theory of weak interactions as it existed
before Glashow, Weinberg, Salam discovered how to unify it with the theory of
electromagnetic interactions. In this context (Rohlf p. 509), the coupling constant
for weak interactions is the Fermi constant GF . According to Rohlf’s Eq. (18.28),
GF has dimensions GeV fm3. In a system of “natural” units in which � = c = 1,
we can transform a length (fm) into an inverse energy (inverse GeV) using the fact
that �c ≈ 0.2 GeV fm. In natural units, GF therefore has dimensions GeV−2.

Since GF is a coupling constant, like the fine structure constant α, it describes
the strength of a quantum mechanical amplitude. The rate is proportional to the
square of the modulus of this amplitude. Thus the decay rateW (which is inversely
proportional to the muon lifetime τµ) is proportional to the square of GF .

Now we have a dilemma. If |GF |2 were the only dimensionful component of W ,
W would have units of GeV−4. However, using the fact that � = 6.6× 10−25 GeV
sec, in natural units we know that W must have units of sec−1 or GeV. So far we
are off by five powers of energy!

The solution is to bring in the only other relevant dimensionful quantity around,
the muon mass mµ. Remembering that mc2 is the same as m in natural units,
we find that we need five powers of mµ in the numerator of W to make its units
correct. Therefore its inverse, the muon lifetime, must have five powers of mµ in
its denominator.

Alternatively, we can approach this problem a bit more formally. Fermi’s Golden
rule says that the decay rate W is given by:

W =
2π
�
|M|2 × (phase space)

whereM is a transition amplitude obtained from perturbation theory (you’ll learn
all about this in 137B). In this case, all we need to know is that M ∝ 1/M2

W . By
dimensionality, we need to cancel the mass of the W boson with something, the best
guess is the mass of the muon. The phase space available to the decay products
in this case is proportional to the available energy, in other words the muon mass
again. So

|M|2 × (phase space) ∝ m5
µ

which again implies τµ ∝ m−5
µ .

(b)

The tau particle has five times as many decay channels as the muon, so the phase
space is increased by a factor of 5. So the tau lifetime is given, from the above
arguments, by:

ττ = τµ

(
1
5

)(
105.7 MeV
1777 MeV

)5

= 0.3 ps.

Problem 7 Rohlf 19.18

We have redshift parameter z = 2. We can employ the formula (19.15) on pg. 539
of Rohlf:

(1 + z)2 =
1 + β

1− β

where β = v/c as usual. We can solve for β:

β =
(1 + z)2 − 1
(1 + z)2 + 1

= 0.8

and then use β in Hubble’s law to determine the distance to the galaxy. Hubble’s
law is

d =
βc

H0

where H0 is the Hubble constant. We find:

d =
βc

H0
=
0.8× (3× 108 m/s)
7× 104 m/s ·Mpc−1 = 3400 Mpc.

Problem 8 Rohlf 19.29

As a rough estimate, we simply set the thermal energy of particles in the early
universe ∼ kT equal to the mass of 2 bottom quarks (actually a bottom and anti-
bottom, which have the same mass). The bottom quarks must be produced in pairs
so that “beauty” is conserved, since the b and b̄ have equal and opposite beauties.
You begin to wonder where this stuff comes from. Anyhow, the mass of 2 bottom
quarks is 10 GeV, which implies T = 1014 K. The characteristic expansion time
texp comes from

texp =
1

H(t)
=

(
2.7 K
T

)2
√

3c2

8πρG
= 5× 1019 s

(
2.7 K
T

)2

.

December 3, 1999



Physics H7C Fall 1999 Solutions to Problem Set 12 Derek Kimball

You should probably check out the discussion on pp. 558-559 of Rohlf. So we can
estimate:

texp ≈ 4× 1020 s ·K2

T 2
= 4× 10−8 s.

And that’s all folks!
Good luck on your finals! Merry winter break!
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